Showing posts with label Electrical. Show all posts
Showing posts with label Electrical. Show all posts

Friday, October 30, 2009

SCHAUM's Theory and Problems of Electric Circuits 4th Ed.



Description:
Author: Mahmood Nahvi, Joseph A. Edminister

This new edition of Schaum's Outline Series of Theory and Problems of Electric Circuits give readers a thorough foundation in the theory and operation of electric circuits. This best selling outline combines brief descriptions of theory with illustrative examples, solved problems, and supplement problems to provide a direct and effective tool and methodology for learning.



Link

Electric Machinery: Fitzgerald

Several new chapters have been added, including a chapter on power electronics, as well as one on speed and torque control of dc and ac motors. This edition has also been expanded with additional examples and practice problems. The use of MATLAB has been introduced to the new edition, both in examples within the text as well as in the chapter problems.




Link 1 or Link 2 Or Link 3 Or Link 4
Solution manual : Link 1 Or Link 2

Electronic Materials Science

1.8 Electronic Properties and Devices.

1.9 Electronic Materials Science.

2 Structure of Solids.

2.1 Introduction.

2.2 Order.

2.3 The Lattice.

2.4 Crystal Structure.

2.5 Notation.

2.6 Lattice Geometry.

2.7 The Wigner-Seitz Cell.

2.8 Crystal Structures.

Related Reading.

Exercises.

3 Diffraction.

3.1 Introduction.

3.2 Phase Difference and Bragg’s Law.

3.3 The Scattering Problem.

3.4 Reciprocal Space, RESP.

3.5 Diffraction Techniques.

3.6 Wave Vector Representation.

Related Reading.

Exercises.

4 Defects in Solids.

4.1 Introduction.

4.2 Why Do Defects Form?

4.3 Point Defects.

4.4 The Statistics of Point Defects.

4.5 Line Defects—Dislocations.

4.6 Planar Defects.

4.7 Three-Dimensional Defects.

Related Reading.

Exercises.

5 Diffusion in Solids.

5.1 Introduction to Diffusion Equations.

5.2 Atomistic Theory of Diffusion: Fick’s Laws and a Theory for the Diffusion Construct D.

5.3 Random Walk Problem.

5.4 Other Mass Transport Mechanisms.

5.5 Mathematics of Diffusion.

Related Reading.

Exercises.

6 Phase Equilibria.

6.1 Introduction.

6.2 The Gibbs Phase Rule.

6.3 Nucleation and Growth of Phases.

Related Reading.

Exercises.

7 Mechanical Properties of Solids—Elasticity.

7.1 Introduction.

7.2 Elasticity Relationships.

7.3 An Analysis of Stress by the Equation of Motion.

7.4 Hooke’s Law for Pure Dilatation and Pure Shear.

7.5 Poisson’s Ratio.

7.6 Relationships Among E, e, and v.

7.7 Relationships Among E, G, and n.

7.8 Resolving the Normal Forces.

Related Reading.

Exercises.

8 Mechanical Properties of Solids—Plasticity.

8.1 Introduction.

8.2 Plasticity Observations.

8.3 Role of Dislocations.

8.4 Deformation of Noncrystalline Materials.

Related Reading.

Exercises.

9 Electronic Structure of Solids.

9.1 Introduction.

9.2 Waves, Electrons, and the Wave Function.

9.3 Quantum Mechanics.

9.4 Electron Energy Band Representations.

9.5 Real Energy Band Structures.

9.6 Other Aspects of Electron Energy Band Structure.

Related Reading.

Exercises.

10 Electronic Properties of Materials.

10.1 Introduction.

10.2 Occupation of Electronic States.

10.3 Position of the Fermi Energy.

10.4 Electronic Properties of Metals: Conduction and Superconductivity.

10.5 Semiconductors.

10.6 Electrical Behavior of Organic Materials.

Related Reading.

Exercises.

11 Junctions and Devices and the Nanoscale.

11.1 Introduction.

11.2 Junctions.

11.3 Selected Devices.

11.4 Nanostructures and Nanodevices.


Link 1 Or Link 2 Or Link 3

Electrical Engineering materials


(click to enlarge)






Link 1 Or Link 2 Or Link 3(djvu)